The fundamentals of polymer synthesis and properties will be introduced, but then special focus is placed on modern instrumentation and analytical methods used for polymer and materials characterisation.
You will receive advanced knowledge from experts within academia and collaborating companies. Gaining hands-on experience in a variety of relevant techniques will enable you to work in any modern laboratory because the skills you acquire will be readily transferable between disciplines.
You will also undertake a cutting-edge project with a world-leading research group. When you graduate, you will be well-positioned to take up employment in research and development roles within a number of sectors, or to progress to PhD study.
You can find out more about the Department of Chemistry by joining our webinarsLink opens in a new window.
Professor Dr Remzi BecerLink opens in a new window is the head of the MSc in Analytical and Polymer Science. Please contact chem-pgt@warwick.ac.uk with any specific Department of Chemistry questions, where our staff are available to discuss any queries.
2:2 undergraduate degree (or equivalent) in a related subject.
For fees and funding options, please visit website to find out more
Our graduates have gone on to work for organisations in: academia and teaching; pharmaceutical industry; chemical and materials industry; science consultancy; banking and finance and other areas. For those who wish to deepen their understanding of the discipline, further research degree study such as a Master’s by Research or a PhD can also be studied within the department. Global Decarbonisation courses
course will open up a variety of potential career paths in the rapidly expanding market for climate professionals including employment within a wide range of government, non-government and academic organizations, as well as private companies.
Our department has a dedicated, professionally-qualified Senior Careers Consultant offering impartial advice and guidance together with workshops and events throughout the year. Previous examples of workshops and events include:
Polymer Synthesis
This module aims to provide a detailed overview of the fundamental considerations and hypotheses of polymer chemistry ensuring that all students have a suitable background knowledge of the major synthetic methods and mechanisms as well as appropriate physical chemistry knowledge to excel in the more advanced aspects of the course. The material will focus on highlighting the importance of advanced polymer structures as well as comprehensive teaching of the applicable polymer synthesis techniques.
Physical Properties of Polymers and Nanocomposites
The ability to characterise polymers/composites and link this to their observable properties is crucial, and this module will cover many advanced aspects of this; in particular, diffraction and scattering techniques and how polymer physical properties affect their processibility. Students will be given the chance to obtain real data in the laboratories and link this to the lecture material.
Frontier Techniques in Analytical Science
This module introduces students from a range of different backgrounds to advanced analytical techniques, and aims to ensure students appreciate the links between need for measurement, instrumentation design, data quality and data analysis.
Chromatography and Separation Science
During this interdisciplinary module students will learn about the theory and practice of different types of chromatography and their application in real-world scenarios. They will develop the skills necessary to decide how to decide which methods are the most appropriate for a given separation problem - whether for analysis or purification of, for example, synthetic polymers, biomolecules, or biopharmaceuticals. The module includes workshops on data interpretation and lab sessions providing students with hands on experience with several different chromatographic methods.
Transferable Skills
This module is based around students completing and recording tasks contributing to the development of transferable skills. Students complete a portfolio and reflect on what they have learned. The various aspects of the course cover: working in teams and working with your supervisor, communicating across disciplines using various media e.g. written reports, posters, presentations, web and video, as well as elements of leadership and career development.
20-week research project
The module is designed to develop student research skills, through an extended project in an area of their chosen discipline. Students will become aware of the elements of research, including appraising the literature, designing novel experiments (practical and/or computational), assessing results and drawing conclusions that they will be able to set against the current field. This module will allow students to be original in their application of knowledge to the solution of new, research-led problems.
Core Optional Modules
You will study one of the following:
Techniques in Quantitative and Qualitative Analysis
This module will introduce practical fundamentals of qualitative and quantitative analysis. We will consider practical aspects of sampling and calibration techniques. The laboratory sessions will include quantitative analyses using volumetry, gravimetry, UV-visible, IR, Raman as well as NMR spectroscopy and state-of-the art inductively coupled plasma spectroscopy (ICP) techniques such as OES and MS.
Analytical and Polymer Laboratories
This module contains a combination of practical analytical and polymer chemistry experiments. The analytical components cover the fundamentals of qualitative and quantitative analysis and the laboratory sessions will include chromatography, titration and Inductively Coupled Plasma (ICP) analysis, (Infra-red (IR) and Raman spectroscopy and Nuclear Magnetic Resonance (NMR) Spectroscopy. The polymer component will introduce students to a range of polymerization techniques, including controlled radical, free radical, ionic and heterogeneous polymerization. The course will serve to introduce students to safety aspects of laboratory work and the students will gain experience and expertise in the use of research quality analytical equipment.
And one of the following:
Group Research Project
The cohort will be split into groups that will work together to share knowledge and understanding of an area of contemporary polymer chemistry with the aim of writing a proposal to address a challenge within this area. The proposal will be written and also presented orally at a specially arranged session. The proposals will then be peer-reviewed by the other groups against strict criteria.
Team Research Project: Real World Analysis
Research questions in academia and industry generally require the development and integration of several analytical techniques. The aim of this module is to make students aware of these requirements. It is the culmination of the taught part of the course, and constitutes the ideal preparation for the research project and future careers in analytical laboratories. The practical work for this module involves team work to solve real analytical problems using multiple techniques and professional data analysis. Literature work will be required as the basis of method development.
Optional modules
Plus three elective modules from:
Mass Spectrometry
This module introduces students to the many facets of modern mass spectrometry. Emphasis is placed both on the interpretation of spectra and also on instrumental methods, covering modern methods of ionisation (including ESI and MALDI) and mass analysis (including orthogonal TOF and FT-ICR) and the use of linked methods such as GC/MS, HPLC/MS and tandem mass spectrometry. Practical sessions include practice at interpretation and experiments using various mass spectrometric techniques.
Magnetic Resonance
Nuclear magnetic resonance (NMR) in both solution and the solid-state as well as electron paramagnetic resonance (EPR) will be described. The course will cover the underlying theory of the experiments as well as practical aspects of recording spectra and their interpretation. The importance of magnetic resonance across science, in, e.g., organic chemistry, pharmaceuticals and proteins, will be demonstrated.
Microscopy and Imaging
This module provides a foundation in the principles and applications of microscopy, starting with basics of light microscopy and progressing to state-of-the-art confocal microscopy, electron microscopy and scanning probe microscopy. The latter includes atomic force microscopy and electrochemical imaging techniques for which Warwick is particularly well-known. The module includes workshops on image analysis and seminars that cover the most recent developments in the field.
Polymers in the Real World
The module runs through term 1 and 2 with seminars delivered by internal researchers (PhD, PDRA, ECFs) and external professionals (e.g. industrial polymer scientists). Before each lecture you will write a 500 word 'mini-essay' on the topic to be covered in the seminar. This should include 3 questions to be asked and discussed with the speaker and 3 primary references (research articles) from the literature. Finally, you will prepare a poster on a research topic covered during the seminar series and present this at a module symposium. You will also be expected to attend the department of Chemistry external seminar series.
Colloid Science I and II
Colloid science is a fundamental and essential aspect of polymer chemistry. The area experiences great interest from the chemical industries across a great variety of application areas, such as laundry care and personal care products, drug delivery formulations, food and drinks, coatings and adhesives, agricultural formulations and many others.
X-ray and Neutron Techniques
X-ray and neutron diffraction and scattering techniques, as well as X-ray spectroscopies will be introduced in this module. Students will learn the underlying theory of the experiments as well as practical aspects of recording data and their interpretation. The importance of X-ray and Neutron methods across science, in e.g., material chemistry, pharmaceuticals and proteins will be demonstrated.
Warwick is a leading university, somewhere forward-looking and ambitious, where the starting point is always 'anything is possible'. Our students, al...